

Animation in the Interface

2

Reading assignment:
This section based on 2 papers

 Bay-Wei Chang, David Ungar, “Animation: From Cartoons to the
User Interface”, Proceedings of UIST’ 93, pp.45-55.

 http://www.acm.org/pubs/articles/proceedings/uist/168642/p45-chang/p45-chang.pdf

 Scott E. Hudson, John T. Stasko, “Animation Support in a User
Interface Toolkit: Flexible, Robust and Reusable Abstractions”,

Proceedings of UIST ‘93, pp.57-67.
 http://www.acm.org/pubs/articles/proceedings/uist/168642/p57-hudson/p57-hudson.pdf

3

Animation is of increasing
interest	

 Perceptual advantages
 Just recently had enough spare horsepower (circa Win98)
 Now seeing this in the mainstream (Vista, MacOS X)

4

Why animation?

 Gives a feeling of reality and liveness
 “animation” = “bring to life”
 make inanimate object animate

5

Why animation?

 Provides visual continuity (and other effects) enhancing
perception
 particularly perception of change

 hard to follow things that just flash into & out of
existence

 real world doesn’t act this way

6

Why Animation?

 Can also be used to direct attention
 movement draws attention
 strong evolutionary reasons

 therein lies a danger
 overuse tends to demand too much attention

 e.g., the dreaded paper clip

7

Why Animation?

 Used sparingly and understandingly, animation can
enhance the interface

8

Three principles from traditional
animation

 not mutually exclusive
 Solidity

 make objects appear to be solid obj
 Exaggeration

 exaggerate certain physical actions to enhance perception
 Reinforcement

 effects to drive home feeling of reality

9

Specific techniques employing
these principles

 Good related paper: John Lasseter, “Principles of traditional animation
applied to 3D computer animation”, Proceedings of SIGGRAPH ‘87, pp. 35 - 44

 Solidity
 want objects to appear solid and appear to have

mass
 Solid (filled) drawing

 now common place

10

Specific techniques employing
these principles

 Solidity
 No teleportation

 objects must come from somewhere
 not just “pop into existence”

 nothing in the real world does this (things with mass
can’t do this)

11

Specific techniques employing
these principles

 Solidity
 Motion blur

 if objects move more than their own length (some
say 1/2 length) in one frame, motion blur should
be used

 matches real world perception
 makes movement look smoother
 doesn’t need to be realistic

12

Specific techniques employing
these principles

 Solidity
 Squash and stretch

 Cartoon objects are typically designed to look
“squishy”

 When they stop, hit something, land, they tend to
squash
 like water balloon
 compress in direction of travel

13

Specific techniques employing
these principles

 Solidity
 Squash and stretch

 Also stretch when they accelerate
 opposite direction

 Basically an approximation of inertia + conservation
of volume (area)

14

Specific techniques employing
these principles

 Solidity
 Squash and stretch

 Although S&S makes things look “squishy” they
contribute to solidity because they show mass

 (This is tends to be exaggerated)

15

Specific techniques employing
these principles

 Solidity
 Follow through (& secondary action)

 Objects don’t just stop, they continue parts of the
motion
 e.g., clothes keep moving, body parts keep moving

 Reinforces that object has mass via inertia
 (also tends to be exaggerated)

16

Follow Through

 Notice feather
lags behind
character

 Also S&S here

 From: Thomas & Johnston
“The Illusion of Life: Disney
Animation”, Hyperion, 1981

17

Specific techniques employing
these principles

 Exaggeration
 Cartoon animation tends to do this in a number of

ways
 paradoxically increases realism (liveness) by being

less literal
 What is really going on is tweaking the perceptual

system at just the right points

18

Specific techniques employing
these principles

 Exaggeration
 Anticipation

 small counter movement just prior to the main
movement

 this sets our attention on the object where the
action is (or will be)

 Squash & stretch
 Follow through

19

Specific techniques employing
these principles

 Reinforcement
 Slow-in / Slow-out

 Movement between two points starts slow, is fast in
the middle, and ends slow

 Two effects here
 objects with mass must accelerate
 interesting parts typically @ ends

 tweaking perception

20

Specific techniques employing
these principles

 Reinforcement
 Movement in arcs

 Objects move in gently curving paths, not straight
lines

 Movements by animate objects are in arcs (due to
mechanics of joints)

 Most movements in gravity also in arcs

21

Recap

 Appearance of mass
 solidity & conservation of volume
 several ways to show inertia

 Tweak perception
 direct attention to things that count
 time on conceptually important parts

 Caricature of reality

22

Examples From Video

23

Reminder

 Animation can bring otherwise boring things to
life, but…

 Its not a uniformly good thing
 demands a lot of attention
 can take time

 Needs to be used wisely (and probably sparingly)

24

Making animation happen in a
toolkit

 Paper describes model in subArctic (and
predecessor)
 high to middle level model
 robust to timing issues

 Primary abstraction: transition
 models movement over time

 arbitrary space of values (eg, color)
 screen space is most common

25

Transition consists of

 Reference to obj being animated
 passage of time modeled as events

 Time interval
 period of time animation occurs

 Trajectory
 path taken through value space
 timing of changes through values

26

Trajectory has two parts

 Curve
 set of values we pass through
 typically in 2D space, but could be in any space of values

(e.g., font size)
 Pacing function

 mapping from time interval (0…1) to “parameter space”
of curve (0…1)

 determines pacing along curve
 e.g., slow-in / slow-out

27

Mapping from time to value

 Time normalized with respect to animation interval (0...1)
 Normalized time is transformed by pacing function (0…1)
 Paced value is then fed to curve function to get final value

28

To get a movement

 Create and schedule a transition
 several predefined types (i.e., linear)
 scheduling can be done absolute

 start stop at the following wall clock times
 or relative

 D seconds from now
 D seconds from start / end of that

29

System action

 Transition will deliver time as input using animatable
interface
 transition_start()
 transition_step()
 transition_end()

 Each delivers:
 trajectory object, relative time & value

30

Transition steps

 Steps represent intervals of time, not points in time
 deliver start and end times & values

 Typical OS can’t deliver uniform time intervals
 Number of steps (delivery rate) is not fixed in advance

(animation system sends as many as it can)

 system delivers as many as it can

31

Recap

 Transition
 Object to animate
 Time interval to work over

 Time  (0…1)
 Trajectory to pass through

 Pacing function (0…1)  (0… 1)
 Curve (0...1)  Value

Animation in Swing
 Unfortunately, no nice API custom built for animation
 Animation usually cobbled together using a grab bag of tricks

 Separate thread to update positions or other attributes of animated
components

 Custom repaint code

 Graphical trickery

 Understanding/using the Swing threading model

 (Depending on what you want to do...)

32

Good Animation Examples
 Excellent book: Swing Hacks, Marinacci and Adamson, O’Reilly Press

 Hack #8: Animated transitions between tabs

 Hack #18: Animated fade-ins of JList selections

 Hack #42: Animated dissolving JFrames

 Plus several others
 Most involve:

 Subclassing existing components to override their painting behavior (overriding
paintComponent() for example)

 Capturing on-screen regions in an Image, and then:
 Fiddle with the image

 Blit it to the screen
 Lather, rinse, repeat as necessary to do a transition

 Simply using a thread to update existing properties on normal components

33

Using a Thread to Update
Normal Component Properties
 If you want to do simple animation (just move a component on-screen, or

change its size), you can do this pretty easily
 No need for crazy custom paint code or imaging

 Figure out the two states you want to change between
 Example: location is currently (0, 0); want to get to (100, 100)

 Figure out how often you want to do updates, and how long the total
transition should take
 Example, want the entire move to happen in .5 seconds; would like .1 seconds

between updates, so ideally 5 “frames” in the animation

 Create a thread that sleeps for the interval, wakes up, and does the update

34

Threading and Swing
 Caution!

 You cannot (should not) update or read any Swing property from a thread
other than a Swing thread

 Example: ok to update component properties in an event handler, as that code
is running in the Swing event dispatch thread

 Updating outside a Swing thread can yield unpredictable results

 See: http://java.sun.com/products/jfc/tsc/articles/threads/threads1.html

35

How to Run Code in the Swing
Event Dispatch Thread?
 javax.swing.SwingUtilities

 invokeLater(Runnable r) -- queue up a runnable to execute on the Swing event
dispatch thread at some later time

 invokeAndWait(Runnable r) -- caution: may lead to deadlock!

 Useful for one-off updates to Swing state

 javax.swing.Timer
 Fires one or more actions after a specified delay
 Calls out to ActionListeners, whose code executes on the event dispatch

thread

36

SwingUtilities.invokeLater
Example

SwingUtilities.invokeLater(new Runnable() {

 public void run() {

 someComponent.setLocation(50, 50);

 }

});

 Take care -- don’t loop in run() or you’ll tie up the event dispatch thread

37

SwingUtilities.Timer Example
public final static int TENTH_OF_A_SECOND = 100;

public int numIterations = 0;

timer = new Timer(TENTH_OF_A_SECOND, new ActionListener() {

 public void actionPerformed(ActionEvent ev) {

 if (numIterations++ >= 5) {

 timer.stop();

 } else {

 someComponent.setLocation(startX + numIterations * (endX - startX)/5,

 startY + numIterations * (endY - startY)/5);

 }

 }

 });

timer.start();

 (Be sure to distinguish from non-Swing java.util.Timers, which aren’t smart with respect to the event
dispatch thread)

38

Gotchas
 Don’t forget that some updates may conflict with other ongoing processes

in Swing
 Example:

 Changing a component’s layout may not “take” if you’re using a LayoutManager
in the parent of that component

39

40

